Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.636
Filtrar
1.
Nat Commun ; 15(1): 3476, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658530

RESUMO

Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.


Assuntos
Cegueira , Mapeamento Encefálico , Córtex Entorrinal , Imageamento por Ressonância Magnética , Humanos , Cegueira/fisiopatologia , Masculino , Adulto , Feminino , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiopatologia , Córtex Entorrinal/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Pessoa de Meia-Idade , Navegação Espacial/fisiologia , Adulto Jovem , Pessoas com Deficiência Visual , Cognição/fisiologia , Imaginação/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(12): e2315758121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489383

RESUMO

Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.


Assuntos
Células de Grade , Ilusões , Navegação Espacial , Humanos , Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Estado de Consciência , Ilusões/fisiologia , Tato , Navegação Espacial/fisiologia
3.
Elife ; 132024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436304

RESUMO

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


Assuntos
Colecistocinina , Córtex Entorrinal , Camundongos , Animais , Córtex Entorrinal/fisiologia , Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
4.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503494

RESUMO

The subiculum (SUB), a hippocampal formation structure, is among the earliest brain regions impacted in Alzheimer's disease (AD). Toward a better understanding of AD circuit-based mechanisms, we mapped synaptic circuit inputs to dorsal SUB using monosynaptic rabies tracing in the 5xFAD mouse model by quantitatively comparing the circuit connectivity of SUB excitatory neurons in age-matched controls and 5xFAD mice at different ages for both sexes. Input-mapped brain regions include the hippocampal subregions (CA1, CA2, CA3), medial septum and diagonal band, retrosplenial cortex, SUB, postsubiculum (postSUB), visual cortex, auditory cortex, somatosensory cortex, entorhinal cortex, thalamus, perirhinal cortex (Prh), ectorhinal cortex, and temporal association cortex. We find sex- and age-dependent changes in connectivity strengths and patterns of SUB presynaptic inputs from hippocampal subregions and other brain regions in 5xFAD mice compared with control mice. Significant sex differences for SUB inputs are found in 5xFAD mice for CA1, CA2, CA3, postSUB, Prh, lateral entorhinal cortex, and medial entorhinal cortex: all of these areas are critical for learning and memory. Notably, we find significant changes at different ages for visual cortical inputs to SUB. While the visual function is not ordinarily considered defective in AD, these specific connectivity changes reflect that altered visual circuitry contributes to learning and memory deficits. Our work provides new insights into SUB-directed neural circuit mechanisms during AD progression and supports the idea that neural circuit disruptions are a prominent feature of AD.


Assuntos
Doença de Alzheimer , Raiva , Camundongos , Feminino , Masculino , Animais , Hipocampo , Córtex Entorrinal/fisiologia , Neurônios/fisiologia
5.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38316560

RESUMO

We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.


Assuntos
Córtex Entorrinal , Células de Grade , Ratos , Animais , Córtex Entorrinal/fisiologia , Modelos Neurológicos , Hipocampo/fisiologia , Neurônios/fisiologia
6.
STAR Protoc ; 5(1): 102917, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421863

RESUMO

Multiple patch-clamp recordings and morphological reconstruction are powerful approaches for neuronal microcircuitry dissection and cell type classification but are challenging due to the sophisticated expertise needed. Here, we present a protocol for applying these techniques to neurons in the medial entorhinal cortex (MEC) of mice. We detail steps to prepare brain slices containing MEC and perform simultaneous multiple whole-cell recordings, followed by procedures of histological staining and neuronal reconstruction. We then describe how we analyze morphological and electrophysiological features. For complete details on the use and execution of this protocol, please refer to Shi et al.1.


Assuntos
Córtex Entorrinal , Neurônios , Camundongos , Animais , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Citoplasma , Técnicas de Patch-Clamp , Encéfalo
7.
Sci Rep ; 14(1): 2989, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316828

RESUMO

Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.


Assuntos
Córtex Entorrinal , Consolidação da Memória , Camundongos , Animais , Córtex Entorrinal/fisiologia , Eletrodos , Giro Denteado/fisiologia , Hipocampo/fisiologia
8.
Neural Comput ; 36(3): 385-411, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363660

RESUMO

Many cognitive functions are represented as cell assemblies. In the case of spatial navigation, the population activity of place cells in the hippocampus and grid cells in the entorhinal cortex represents self-location in the environment. The brain cannot directly observe self-location information in the environment. Instead, it relies on sensory information and memory to estimate self-location. Therefore, estimating low-dimensional dynamics, such as the movement trajectory of an animal exploring its environment, from only the high-dimensional neural activity is important in deciphering the information represented in the brain. Most previous studies have estimated the low-dimensional dynamics (i.e., latent variables) behind neural activity by unsupervised learning with Bayesian population decoding using artificial neural networks or gaussian processes. Recently, persistent cohomology has been used to estimate latent variables from the phase information (i.e., circular coordinates) of manifolds created by neural activity. However, the advantages of persistent cohomology over Bayesian population decoding are not well understood. We compared persistent cohomology and Bayesian population decoding in estimating the animal location from simulated and actual grid cell population activity. We found that persistent cohomology can estimate the animal location with fewer neurons than Bayesian population decoding and robustly estimate the animal location from actual noisy data.


Assuntos
Células de Grade , Animais , Teorema de Bayes , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Modelos Neurológicos , Percepção Espacial/fisiologia
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 80-89, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403607

RESUMO

Physiological studies have revealed that rats perform spatial localization relying on grid cells and place cells in the entorhinal-hippocampal CA3 structure. The dynamic connection between the entorhinal-hippocampal structure and the prefrontal cortex is crucial for navigation. Based on these findings, this paper proposes a spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of the rat's brain, with the aim of endowing the mobile robot with strong spatial navigation capability. Using the hippocampal CA3-prefrontal spatial navigation model as a foundation, this paper constructed a dynamic self-organizing model with the hippocampal CA1 place cells as the basic unit to optimize the navigation path. The path information was then fed back to the impulse neural network via hippocampal CA3 place cells and prefrontal cortex action neurons, improving the convergence speed of the model and helping to establish long-term memory of navigation habits. To verify the validity of the method, two-dimensional simulation experiments and three-dimensional simulation robot experiments were designed in this paper. The experimental results showed that the method presented in this paper not only surpassed other algorithms in terms of navigation efficiency and convergence speed, but also exhibited good adaptability to dynamic navigation tasks. Furthermore, our method can be effectively applied to mobile robots.


Assuntos
Córtex Entorrinal , Navegação Espacial , Ratos , Animais , Córtex Entorrinal/fisiologia , Navegação Espacial/fisiologia , Hipocampo , Neurônios/fisiologia , Córtex Pré-Frontal , Modelos Neurológicos
10.
Mol Brain ; 17(1): 5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317261

RESUMO

Entorhinal cortical (EC)-hippocampal (HPC) circuits are crucial for learning and memory. Although it was traditionally believed that superficial layers (II/III) of the EC mainly project to the HPC and deep layers (V/VI) receive input from the HPC, recent studies have highlighted the significant projections from layers Va and VI of the EC into the HPC. However, it still remains unknown whether Vb neurons in the EC provide projections to the hippocampus. In this study, using a molecular marker for Vb and retrograde tracers, we identified that the outer layer of Vb neurons in the medial EC (MEC) directly project to both dorsal and ventral hippocampal dentate gyrus (DG), with a significant preference for the ventral DG. In contrast to the distribution of DG-projecting Vb cells, anterior thalamus-projecting Vb cells are distributed through the outer to the inner layer of Vb. Furthermore, dual tracer injections revealed that DG-projecting Vb cells and anterior thalamus-projecting Vb cells are distinct populations. These results suggest that the roles of MEC Vb neurons are not merely limited to the formation of EC-HPC loop circuits, but rather contribute to multiple neural processes for learning and memory.


Assuntos
Córtex Entorrinal , Neurônios , Camundongos , Animais , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Giro Denteado
11.
Nat Commun ; 15(1): 1849, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418832

RESUMO

The hippocampus and entorhinal cortex exhibit rich oscillatory patterns critical for cognitive functions. In the hippocampal region CA1, specific gamma-frequency oscillations, timed at different phases of the ongoing theta rhythm, are hypothesized to facilitate the integration of information from varied sources and contribute to distinct cognitive processes. Here, we show that gamma elements -a multidimensional characterization of transient gamma oscillatory episodes- occur at any frequency or phase relative to the ongoing theta rhythm across all CA1 layers in male mice. Despite their low power and stochastic-like nature, individual gamma elements still carry behavior-related information and computational modeling suggests that they reflect neuronal firing. Our findings challenge the idea of rigid gamma sub-bands, showing that behavior shapes ensembles of irregular gamma elements that evolve with learning and depend on hippocampal layers. Widespread gamma diversity, beyond randomness, may thus reflect complexity, likely functional but invisible to classic average-based analyses.


Assuntos
Hipocampo , Neurônios , Masculino , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Entorrinal/fisiologia , Ritmo Teta/fisiologia , Simulação por Computador , Ritmo Gama/fisiologia , Região CA1 Hipocampal/fisiologia
12.
Nat Commun ; 15(1): 982, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302455

RESUMO

Boundaries to movement form a specific class of landmark information used for navigation: Boundary Vector Cells (BVCs) are neurons which encode an animal's location as a vector displacement from boundaries. Here we characterise the prevalence and spatial tuning of subiculum BVCs in adult and developing male rats, and investigate the relationship between BVC spatial firing and boundary geometry. BVC directional tunings align with environment walls in squares, but are uniformly distributed in circles, demonstrating that environmental geometry alters BVC receptive fields. Inserted barriers uncover both excitatory and inhibitory components to BVC receptive fields, demonstrating that inhibitory inputs contribute to BVC field formation. During post-natal development, subiculum BVCs mature slowly, contrasting with the earlier maturation of boundary-responsive cells in upstream Entorhinal Cortex. However, Subiculum and Entorhinal BVC receptive fields are altered by boundary geometry as early as tested, suggesting this is an inherent feature of the hippocampal representation of space.


Assuntos
Hipocampo , Percepção Espacial , Ratos , Masculino , Animais , Percepção Espacial/fisiologia , Hipocampo/fisiologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Movimento
13.
Prog Neurobiol ; 233: 102569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232782

RESUMO

Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.


Assuntos
Navegação Espacial , Humanos , Navegação Espacial/fisiologia , Encéfalo , Córtex Entorrinal/fisiologia , Mapeamento Encefálico , Cognição , Modelos Neurológicos , Percepção Espacial/fisiologia
14.
Nat Neurosci ; 27(3): 536-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272968

RESUMO

During goal-directed navigation, 'what' information, describing the experiences occurring in periods surrounding a reward, can be combined with spatial 'where' information to guide behavior and form episodic memories. This integrative process likely occurs in the hippocampus, which receives spatial information from the medial entorhinal cortex; however, the source of the 'what' information is largely unknown. Here, we show that mouse lateral entorhinal cortex (LEC) represents key experiential epochs during reward-based navigation tasks. We discover separate populations of neurons that signal goal approach and goal departure and a third population signaling reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning the new reward location. Therefore, the LEC contains a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the medial entorhinal cortex.


Assuntos
Córtex Entorrinal , Hipocampo , Camundongos , Animais , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Espacial/fisiologia , Recompensa
15.
Biosystems ; 235: 105091, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040283

RESUMO

A normative model for the emergence of entorhinal grid cells in the brain's navigational system has been proposed (Sorscher et al., 2023. Neuron 111, 121-137). Using computational modeling of place-to-grid cell interactions, the authors characterized the fundamental nature of grid cells through information processing. However, the normative model does not consider certain discoveries that complement or contradict the conditions for such emergence. By briefly reviewing current evidence, we draw some implications on the interplay between place cell replay sequences and intrinsic grid cell oscillations related to the hippocampal-entorhinal navigation system that can extend the normative model.


Assuntos
Córtex Entorrinal , Hipocampo , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Cognição , Simulação por Computador , Modelos Neurológicos
16.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991278

RESUMO

The hippocampus is largely recognized for its integral contributions to memory processing. By contrast, its role in perceptual processing remains less clear. Hippocampal properties vary along the anterior-posterior (AP) axis. Based on past research suggesting a gradient in the scale of features processed along the AP extent of the hippocampus, the representations have been proposed to vary as a function of granularity along this axis. One way to quantify such granularity is with population receptive field (pRF) size measured during visual processing, which has so far received little attention. In this study, we compare the pRF sizes within the hippocampus to its activation for images of scenes versus faces. We also measure these functional properties in surrounding medial temporal lobe (MTL) structures. Consistent with past research, we find pRFs to be larger in the anterior than in the posterior hippocampus. Critically, our analysis of surrounding MTL regions, the perirhinal cortex, entorhinal cortex, and parahippocampal cortex shows a similar correlation between scene sensitivity and larger pRF size. These findings provide conclusive evidence for a tight relationship between the pRF size and the sensitivity to image content in the hippocampus and adjacent medial temporal cortex.


Assuntos
Imageamento por Ressonância Magnética , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/fisiologia , Hipocampo/fisiologia , Córtex Entorrinal/fisiologia , Memória/fisiologia
17.
Nature ; 625(7994): 338-344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123682

RESUMO

The medial entorhinal cortex (MEC) hosts many of the brain's circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience1. Whereas location is known to be encoded by spatially tuned cell types in this brain region2,3, little is known about how the activity of entorhinal cells is tied together over time at behaviourally relevant time scales, in the second-to-minute regime. Here we show that MEC neuronal activity has the capacity to be organized into ultraslow oscillations, with periods ranging from tens of seconds to minutes. During these oscillations, the activity is further organized into periodic sequences. Oscillatory sequences manifested while mice ran at free pace on a rotating wheel in darkness, with no change in location or running direction and no scheduled rewards. The sequences involved nearly the entire cell population, and transcended epochs of immobility. Similar sequences were not observed in neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in MEC may have the potential to couple neurons and circuits across extended time scales and serve as a template for new sequence formation during navigation and episodic memory formation.


Assuntos
Córtex Entorrinal , Neurônios , Periodicidade , Animais , Camundongos , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal/fisiologia , Corrida/fisiologia , Fatores de Tempo , Escuridão , Córtex Visual/fisiologia , Vias Neurais , Navegação Espacial/fisiologia , Memória Episódica
18.
Dev Neurobiol ; 84(1): 32-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38124434

RESUMO

Autism spectrum disorder is a heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted, and stereotyped behaviors. The valproic acid model is one of the most recognized and broadly used models in rats to induce core symptoms of this disorder. Comorbidity of epilepsy and autism occurs frequently, due to similar background mechanisms that include the imbalance of excitation and inhibition. In this series of experiments, treatment was performed on rat dams with a single 500 mg/kg dose i.p. valproate injection on embryonic day 12.5. Intracellular whole-cell patch clamp recordings were performed on brain slices prepared from adolescent and adult offspring of both sexes on pyramidal neurons of the medial prefrontal cortex and entorhinal cortex. Current clamp stimulation utilizing conventional current step protocols and dynamic clamp stimulation were applied to assess neuronal excitability. Membrane properties and spiking characteristics of layer II-III pyramidal cells were analyzed in both cortical regions. Significant sex-dependent and age-dependent differences were found in several parameters in the control groups. Considering membrane resistance, rheobase, voltage sag slope, and afterdepolarization slope, we observed notable changes mainly in the female groups. Valproate treatment seemed to enhance these differences and increase network excitability. However, it is possible that compensatory mechanisms took place during the maturation of the network while reaching the age-group of 3 months. Based on the results, the expression of the hyperpolarization-activated cyclic nucleotide-gated channels may be appreciably affected by the valproate treatment, which influences fundamental electrophysiological properties of the neurons such as the voltage sag. Remarkable changes appeared in the prefrontal cortex; however, also the entorhinal cortex shows similar tendencies.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Masculino , Ratos , Feminino , Animais , Ácido Valproico/farmacologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Córtex Entorrinal/fisiologia
19.
Nature ; 626(8001): 1056-1065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122823

RESUMO

The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.


Assuntos
Movimento Celular , Neurônios , Lobo Temporal , Animais , Pré-Escolar , Humanos , Lactente , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , 60661/citologia , Interneurônios/citologia , Interneurônios/fisiologia , Macaca mulatta , Neurônios/citologia , Neurônios/fisiologia , Análise da Expressão Gênica de Célula Única , Lobo Temporal/citologia , Lobo Temporal/crescimento & desenvolvimento
20.
Mol Brain ; 16(1): 78, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964372

RESUMO

A critical feature of episodic memory formation is to associate temporally segregated events as an episode, called temporal association learning. The medial entorhinal cortical-hippocampal (EC-HPC) networks is essential for temporal association learning. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the hippocampal CA1 pyramidal cells and are necessary for trace fear conditioning (TFC), which is an associative learning between tone and aversive shock with the temporal gap. On the other hand, Island cells in MECII, project to GABAergic neurons in hippocampal CA1, suppress the MECIII input into the CA1 pyramidal cells through the feed-forward inhibition, and inhibit TFC. However, it remains unknown about how Island cells activity is regulated during TFC. In this study, we report that dopamine D1 receptor is preferentially expressed in Island cells in the MEC. Optogenetic activation of dopamine D1 receptors in Island cells facilitate the Island cell activity and inhibited hippocampal CA1 pyramidal cell activity during TFC. The optogenetic activation caused the impairment of TFC memory recall without affecting contextual fear memory recall. These results suggest that dopamine D1 receptor in Island cells have a crucial role for the regulation of temporal association learning.


Assuntos
Aprendizagem por Associação , Córtex Entorrinal , Córtex Entorrinal/fisiologia , Aprendizagem por Associação/fisiologia , Optogenética , Hipocampo/fisiologia , Receptores de Dopamina D1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...